🎉 Welcome to Aerosand!.
04_energyConservation

04_energyConservation

0. 前言

前面已经讨论了连续性方程和动量方程,我们也知道物理本质上是基于质量守恒和动量守恒的讨论。很多流动问题还要涉及能量变化的讨论,比如温度的变化。

能量方程的推导基于能量守恒。

本文主要讨论

  • 能量方程的推导
  • 不同角度的推导
  • 理解数学表达的物理意义

1. 分量形式

|428x280

假设我们取一个无穷小物质体微元模型,可以建立控制体系统的守恒

物质体微元内能量的变化率 A = 单位时间流入微元的净热流量 B + 体积力和表面力对微元做功的功率 C

1.1. 外力做功

前文已经讨论过外力包括体积力和表面力

讨论体积力做功,功率为

ρfU(dxdydz)\rho \vec f\cdot U(dxdydz)

讨论表面力做功

xx 方向为例,约定力沿着坐标轴正向做正功,相反做负功。

压力做功功率为

[up(up+(up)xdx)]dydz=(up)xdxdydz\bigg[up-(up+\frac{\partial(up)}{\partial x}dx) \bigg]dydz = -\frac{\partial(up)}{\partial x}dxdydz

粘性力做功功率为

[(uτxx+(uτxx)xdx)uτxx]dydz+[(uτyx+(uτyx)ydy)uτyx]dxdz+[(uτzx+(uτzx)zdz)uτzx]dxdy+=[(uτxx)x+(uτyx)y+(uτzx)z]dxdydz \begin{align*} \bigg[(u\tau_{xx}+ \frac{\partial{(u\tau_{xx})} }{\partial x}dx)-u\tau_{xx} \bigg]dydz +\\ \bigg[(u\tau_{yx}+\frac{\partial(u\tau_{yx})}{\partial y}dy)-u\tau_{yx} \bigg]dxdz + \\ \bigg[(u\tau_{zx} + \frac{\partial (u\tau_{zx})}{\partial z}dz )-u\tau_{zx} \bigg]dxdy + \\ = \bigg[\frac{\partial(u\tau_{xx})}{\partial x}+\frac{\partial(u\tau_{yx})}{\partial y}+ \frac{\partial(u\tau_{zx})}{\partial z} \bigg]dxdydz \end{align*}

综合各个方向的受力做功,最终得到 C 为

C=[((up)x+(vp)y+(wp)z)+(uτxx)x+(uτyx)y+(uτzx)z+(vτxy)x+(vτyy)y+(vτzy)z+(wτxz)x+(wτyz)y+(wτzz)z]dxdydz+ρfU(dxdydz)\begin{aligned} C &= \bigg[-(\frac{\partial(up)}{\partial x}+\frac{\partial(vp)}{\partial y}+\frac{\partial(wp)}{\partial z}) \\ & +\frac{\partial(u\tau_{xx})}{\partial x} + \frac{\partial(u\tau_{yx})}{\partial y} + \frac{\partial(u\tau_{zx})}{\partial z} \\ &+ \frac{\partial(v\tau_{xy})}{\partial x} + \frac{\partial(v\tau_{yy})}{\partial y} + \frac{\partial(v\tau_{zy})}{\partial z} \\ &+ \frac{\partial(w\tau_{xz})}{\partial x} + \frac{\partial(w\tau_{yz})}{\partial y} + \frac{\partial(w\tau_{zz})}{\partial z} \bigg]dxdydz +\rho \vec f\cdot U(dxdydz) \end{aligned}

1.2. 热量流量

体积加热,如吸收和释放的辐射热

ρq˙dxdydz\rho \dot qdxdydz

温度梯度导致的经过表面的热输运,即热传导

xx 方向为例考虑热传导为

[q˙x(q˙x+q˙xxdx)]dydz=q˙xxdxdydz\bigg[\dot q_x - (\dot q_x + \frac{\partial \dot q_x}{\partial x}dx)\bigg]dydz = -\frac{\partial \dot q_x}{\partial x}dxdydz

热传导的总加热为

(q˙xx+q˙yy+q˙zz)dxdydz-(\frac{\partial \dot q_x}{\partial x}+\frac{\partial \dot q_y}{\partial y}+\frac{\partial \dot q_z}{\partial z})dxdydz

综合各项,流入微元的净热流量 B 为

B=[ρq˙(q˙xx+q˙yy+q˙zz)]dxdydzB=\bigg[\rho \dot q-(\frac{\partial \dot q_x}{\partial x}+\frac{\partial \dot q_y}{\partial y}+\frac{\partial \dot q_z}{\partial z})\bigg]dxdydz

根据傅里叶热传导定律有

q˙i=kTxi\dot q_i = -k\frac{\partial T}{\partial x_i}

最终

B=[ρq˙+x(kTx)+y(kTy)+z(kTz)]dxdydzB = \bigg[\rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z})\bigg]dxdydz

1.3. 能量变化

微元的总能量包括动能和内能两部分。一部分是分子随机运动而产生的内能,另一部分就是流体微团的动能。

A=ρDDt(e^+U22)dxdydzA = \rho\frac{D}{Dt}(\hat e + \frac{U^2}{2})dxdydz

1.4. 能量方程

根据守恒形式

A=B+CA = B + C

ρDDt(e^+U22)=ρq˙+x(kTx)+y(kTy)+z(kTz)[(up)x+(vp)y+(wp)z]+(uτxx)x+(uτyx)y+(uτzx)z+(vτxy)x+(vτyy)y+(vτzy)z+(wτxz)x+(wτyz)y+(wτzz)z+ρfU\begin{aligned} \rho\frac{D}{Dt}(\hat e &+ \frac{U^2}{2}) = \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) \\ &-\bigg[\frac{\partial(up)}{\partial x}+\frac{\partial(vp)}{\partial y}+\frac{\partial(wp)}{\partial z}\bigg]+\frac{\partial(u\tau_{xx})}{\partial x} + \frac{\partial(u\tau_{yx})}{\partial y} + \frac{\partial(u\tau_{zx})}{\partial z} \\ &+ \frac{\partial(v\tau_{xy})}{\partial x} + \frac{\partial(v\tau_{yy})}{\partial y} + \frac{\partial(v\tau_{zy})}{\partial z}+ \frac{\partial(w\tau_{xz})}{\partial x}+ \frac{\partial(w\tau_{yz})}{\partial y} + \frac{\partial(w\tau_{zz})}{\partial z} + \rho \vec f\cdot U \end{aligned}

考虑重力为主要体积力

通用形式的能量方程

ρD(e^+U22)Dt=(kT)(pU)+ρ(Ug)+(τU)+ρq˙\rho\frac{D(\hat{e}+ \frac{U^{2}}{2})}{Dt} = \nabla\cdot(k\nabla T) -\nabla\cdot(pU)+\rho(U\cdot g) +\nabla\cdot(\tau\cdot U)+\rho \dot{q}

后面的讨论把右侧几项都纳入源项 SS

1.5. 动能和内能

由动量方程 xx 方向的受力分析式

ρDuDt=px+τxxx+τyxy+τzxz+ρfx\rho\frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial\tau_{xx}}{\partial x} + \frac{\partial\tau_{yx}}{\partial y} + \frac{\partial\tau_{zx}}{\partial z} + \rho f_{x}

两边同时乘以 xx,整理可以得到

ρDDt(u22)=upx+uτxxx+uτyxy+uτzxz+ρufx\rho\frac{D}{Dt}(\frac{u^2}{2}) = -u\frac{\partial p}{\partial x} + u\frac{\partial\tau_{xx}}{\partial x} + u\frac{\partial\tau_{yx}}{\partial y} + u\frac{\partial\tau_{zx}}{\partial z} + \rho uf_x

ρDDt(U22)=ρDDt(u22+v22+w22)\rho\frac{D}{Dt}(\frac{U^2}{2}) = \rho\frac{D}{Dt}(\frac{u^2}{2} + \frac{v^2}{2} + \frac{w^2}{2})

从能量方程中减去所有方向的动能项,可以得到只有内能的能量方程

ρDe^Dt=ρq˙+x(kTx)+y(kTy)+z(kTz)p(ux+vy+wz)+τxxux+τyxuy+τzxuz+τxyvx+τyyvy+τzyvz+τxzwx+τyzwy+τzzwz\begin{aligned} \rho\frac{D\hat e}{Dt} &= \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) -p(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}) \\ &+ \tau_{xx}\frac{\partial u}{\partial x} + \tau_{yx}\frac{\partial u }{\partial y} + \tau_{zx}\frac{\partial u }{\partial z} + \tau_{xy}\frac{\partial v }{\partial x} + \tau_{yy}\frac{\partial v }{\partial y} + \tau_{zy}\frac{\partial v }{\partial z} + \tau_{xz}\frac{\partial w }{\partial x} + \tau_{yz}\frac{\partial w }{\partial y} + \tau_{zz}\frac{\partial w }{\partial z} \end{aligned}

Tip

注意该形式的能量方程不包含体积力项,应力在速度梯度之外

切应力具有对称形

τij=τji\tau_{ij} = \tau_{ji}

ρDe^Dt=ρq˙+x(kTx)+y(kTy)+z(kTz)p(ux+vy+wz)+τxxux+τyxuy+τzxuz+τxyvx+τyyvy+τzyvz+τxzwx+τyzwy+τzzwz=ρq˙+x(kTx)+y(kTy)+z(kTz)p(ux+vy+wz)+τxxux+τyyvy+τzzwz+τyx(uy+vx)+τzx(uz+wx)+τzy(vz+wy) \begin{aligned} \rho\frac{D\hat e}{Dt} &= \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) -p(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}) \\ &+ \tau_{xx}\frac{\partial u}{\partial x} + \tau_{yx}\frac{\partial u }{\partial y} + \tau_{zx}\frac{\partial u }{\partial z} + \tau_{xy}\frac{\partial v }{\partial x} + \tau_{yy}\frac{\partial v }{\partial y} + \tau_{zy}\frac{\partial v }{\partial z} + \tau_{xz}\frac{\partial w }{\partial x} + \tau_{yz}\frac{\partial w }{\partial y} + \tau_{zz}\frac{\partial w }{\partial z} \\ &= \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) -p(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}) \\ &+ \tau_{xx}\frac{\partial u}{\partial x} + \tau_{yy}\frac{\partial v }{\partial y} + \tau_{zz}\frac{\partial w }{\partial z} + \tau_{yx}\left(\frac{\partial u }{\partial y}+\frac{\partial v }{\partial x}\right)+ \tau_{zx}\left(\frac{\partial u }{\partial z}+\frac{\partial w }{\partial x}\right)+ \tau_{zy}(\frac{\partial v }{\partial z}+\frac{\partial w }{\partial y}) \end{aligned}

利用前文讨论过的斯托克斯的流体物性关系

内能能量方程进一步可以改写成完全流场变量表示的能量方程,即

ρDe^Dt=ρq˙+x(kTx)+y(kTy)+z(kTz)p(ux+vy+wz)+λ(ux+vy+wz)2+μ[2(ux)2+2(vy)2+2(wz)2+(uy+vx)2+(uz+wx)2+(vz+wy)2] \begin{aligned} \rho\frac{D\hat e}{Dt} &= \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) -p(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}) \\ &+ \lambda( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z})^{2} + \mu\bigg[2(\frac{\partial u}{\partial x})^{2}+2(\frac{\partial v }{\partial y})^{2} + 2(\frac{\partial w }{\partial z})^{2} \\ &+ (\frac{\partial u }{\partial y}+\frac{\partial v }{\partial x})^{2}+(\frac{\partial u }{\partial z}+\frac{\partial w }{\partial x})^{2} + (\frac{\partial v }{\partial z}+\frac{\partial w }{\partial y})^{2} \bigg] \end{aligned}

完整形式的能量方程当然也可以代入物性关系进行整理。

1.6. 守恒和非守恒

注意到上文讨论的方程是非守恒形式。

根据【物质导数换算】,有

ρDe^Dt=ρe^t+(ρe^U) \rho\frac{D\hat{e}}{Dt} = \frac{\partial \rho \hat{e}}{\partial t} + \nabla \cdot (\rho \hat{e}U)

可以将前文非守恒型方程改成守恒型方程

ρe^t+(ρe^U)=ρq˙+x(kTx)+y(kTy)+z(kTz)p(ux+vy+wz)+λ(ux+vy+wz)2+μ[2(ux)2+2(vy)2+2(wz)2+(uy+vx)2+(uz+wx)2+(vz+wy)2] \begin{align*} \frac{\partial \rho \hat{e}}{\partial t} + \nabla\cdot(\rho \hat{e}U) &= \rho \dot q+ \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial T}{\partial z}) -p(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}) \\ &+ \lambda( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z})^{2} + \mu\bigg[2(\frac{\partial u}{\partial x})^{2}+2(\frac{\partial v }{\partial y})^{2} + 2(\frac{\partial w }{\partial z})^{2} \\ &+ (\frac{\partial u }{\partial y}+\frac{\partial v }{\partial x})^{2}+(\frac{\partial u }{\partial z}+\frac{\partial w }{\partial x})^{2} + (\frac{\partial v }{\partial z}+\frac{\partial w }{\partial y})^{2} \bigg] \end{align*}

使用广义源项,整理为通用形式能量方程为

tρe^+(ρUe^)=(kT)+S\frac{\partial}{\partial t}\rho \hat{e} + \nabla\cdot (\rho U \hat{e})= \nabla\cdot(k\nabla T) + S

2. 张量形式

物质体流体微团的能量为

E=m(e^+12U2)E = m(\hat e + \frac{1}{2}U^2)

dEdm=e^+12U2=e \frac{dE}{dm} = \hat{e} + \frac{1}{2}U^{2} = e

根据热力学第一定律,

能量的变化 = 吸收的热量 - 系统对外做的功

(dEdt)MV=QW(\frac{dE}{dt})_{MV} = Q - W

2.1. 吸收热量

内部产生和消失的 QVQ_V

QV=Vq˙VdVQ_V = \int_V \dot q_V dV

增加为正,减少为负。此处为正,即热量增加。

此外还有通过表面输运的 QSQ_S

QS=Sq˙SndS=Vq˙SdVQ_S = -\int_S \dot q_S\cdot \vec n dS = -\int_V \nabla\cdot \dot q_S dV

沿着面法向向外为正,向内为负。此处负号表示热量流入物质体,即热量增加。

2.2. 对外做功

对外做功包括体积力和表面力两部分的做功。

体积力做功,有

Wb=V(fbU)dVW_b = -\int_V(\vec f_b \cdot U)dV

体积力做功加负号,就是物质体通过体积力对外做功。

表面力做功,有

WS=V(fSU)dV=V(ΣU)ndS=V(ΣU)dVW_S = -\int_{\partial V}(\vec f_{S}\cdot U)dV = -\int_{\partial V}(\Sigma\cdot U)\cdot\vec ndS = -\int_V\nabla\cdot(\Sigma\cdot U)dV

Tip

记得之前讨论过,使用 Σ\Sigma 表示总应力张量(total stress tensor)(完整包含单位面积的压力和单位面积的粘性力)

面积力沿着法向向外为正,向内为负。面积力做功加负号,就是物质体通过面积力对外做功。 利用动量方程中对表面力的讨论,得到

WS=V[(pI+τ)U]dVW_S =-\int_V\nabla\cdot[(-p\vec I + \tau)\cdot U]dV

利用张量计算法则,得到

WS=V[(pU)+(τU)]dVW_S =-\int_V [-\nabla\cdot(p U) + \nabla\cdot(\tau\cdot U)]dV

2.3. 能量方程

将上述代入

(dEdt)MV=QW(\frac{dE}{dt})_{MV} = Q - W

根据【雷诺输运定理

(dBdt)MV=V[t(ρb)+(ρUb)]dV=V[DDt(ρb)+ρbU]dV \bigg(\frac{dB}{dt}\bigg)_{MV} = \int_V\bigg[\frac{\partial}{\partial t}(\rho b) + \nabla \cdot (\rho U b)\bigg]dV = \int_V\bigg[\frac{D}{D t}(\rho b) + \rho b \nabla \cdot U\bigg]dV

(dEdt)MV=V[t(ρe)+(ρUe)]dV=Vq˙VdVVq˙SdV+V[(pU)+(τU)]dV+V(fbU)dV\begin{align*} (\frac{dE}{dt})_{MV} &= \int_V[\frac{\partial}{\partial t}(\rho e) + \nabla\cdot(\rho U e)]dV \\ &= \int_V \dot q_V dV-\int_V \nabla\cdot \dot q_S dV + \int_V [-\nabla\cdot(pU) + \nabla\cdot(\tau\cdot U)]dV + \int_V(\vec f_b \cdot U)dV \end{align*}

拿去相同的积分,得到

【完整能量方程】

t(ρe)+(ρUe)=q˙S(pU)+(τU)+fbU+qV˙\frac{\partial}{\partial t}(\rho e) + \nabla\cdot(\rho U e) = -\nabla\cdot \dot q_S -\nabla\cdot(pU) + \nabla\cdot(\tau\cdot U) + \vec f_b \cdot U + \dot{q_V}

我们将动能部分去除以得到内能表达形式的能量方程。

考虑动量方程(动量方程一文已经讨论过)

ρUt+ρUU=f \rho\frac{\partial U}{\partial t} + \rho U\cdot \nabla U= \vec f

[ρUt+ρUU]U=fU \bigg[\rho\frac{\partial U}{\partial t} + \rho U\cdot \nabla U \bigg] \cdot U= \vec f\cdot U

根据张量计算关系,整理有

t(ρUU)ρUUt+[ρ(UU)U]ρU[(U)U]=fU \frac{\partial}{\partial t}(\rho U\cdot U) -\rho U\cdot \frac{\partial U}{\partial t} + \nabla\cdot[\rho(U\cdot U)U]-\rho U\cdot[(U\cdot\nabla)U] = \vec{f}\cdot U

进一步整理为

t(ρUU)+[ρ(UU)U]Uρ[Ut+(U)U]=f=fU \frac{\partial}{\partial t}(\rho U\cdot U) - + \nabla\cdot[\rho(U\cdot U)U] - U\cdot \underbrace{\rho\bigg[\frac{\partial U}{\partial t}+(U\cdot\nabla)U \bigg]}_{=\vec{f}} = \vec{f}\cdot U

外力为

f=[Σ]=p+[τ]+fb\vec f = [\nabla\cdot\Sigma] = -\nabla p + [\nabla\cdot \tau] +\vec{f_{b}}

代入之后整理,两边同时除以 2 ,

t(ρ12UU)+[ρ(12UU)U]=Up+U[τ]+fbU \frac{\partial}{\partial t}\left(\rho \frac{1}{2} U\cdot U\right)+ \nabla\cdot[\rho( \frac{1}{2} U\cdot U)U]= -U\cdot \nabla p + U\cdot [\nabla\cdot \tau] + \vec{f_{b}}\cdot U

利用张量计算关系有

t(ρ12UU)+[ρ(12UU)U]=[pU]+pU+[τU](τ:U)+fbU \begin{align*} \frac{\partial}{\partial t}\left(\rho \frac{1}{2} U\cdot U\right)+ \nabla\cdot\bigg[\rho( \frac{1}{2} U\cdot U)U\bigg] &= -\nabla\cdot[pU]+p\nabla\cdot U + \nabla\cdot[\tau\cdot U] - (\tau:\nabla U) +\vec{f_{b}}\cdot U \end{align*}

将总能量方程减去此基于动能的能量方程,得到基于内能的能量方程,为

t(ρe^)+[ρUe^]=qs˙pU+(τ:U)+qv˙ \frac{\partial}{\partial t}(\rho \hat{e}) + \nabla\cdot[\rho U \hat{e}] = -\nabla\cdot \dot{q_{s}} - p\nabla\cdot U + (\tau:\nabla U) + \dot{q_{v}}

2.4. 温度方程

考虑焓的表达

e^=h^pρ \hat{e} = \hat{h} - \frac{p}{\rho}

代入基于内能的能量方程,有

t(ρh^)+[ρUh^]=qs˙DpDt+(τ:U)+qV˙ \frac{\partial}{\partial t}(\rho\hat{h}) + \nabla\cdot[\rho U \hat{h}] = -\nabla\cdot \dot{q_{s}} - \frac{Dp}{Dt} + (\tau:\nabla U) + \dot{q_{V}}

Tip

能量方程很少求解完整形式,往往因具体问题采用不同的形式,为了保证理解,本阶段暂不深入。不用担心,以后遇到会在合适的时候继续讨论。

这里直接给出温度相关的能量方程为

t(ρcpT)+(ρcpUT)=(kT)+QT\frac{\partial}{\partial t}(\rho c_pT) + \nabla\cdot(\rho c_p U T) = \nabla\cdot(k\nabla T) + Q^T

3. 小结

本文完成讨论

  • 能量方程的推导
  • 不同角度的推导
  • 理解数学表达的物理意义

References

[1] The Finite Volume Method in Computational Fluid Dynamics, https://link.springer.com/book/10.1007/978-3-319-16874-6

[2] Computational fluid dynamics : the basics with applications, https://searchworks.stanford.edu/view/2989631

[3] Mathematics, Numerics, Derivations and OpenFOAM®, https://holzmann-cfd.com/community/publications/mathematics-numerics-derivations-and-openfoam-free

[4] Notes on Computational Fluid Dynamics: General Principles, https://doc.cfd.direct/notes/cfd-general-principles/

Last updated on